# US Department of Energy National Carbon Capture Center





## National Carbon Capture Center

# U.S. Department of Energy National Carbon Capture Center

at the Power Systems Development Facility

#### **PARTICIPANTS:**



















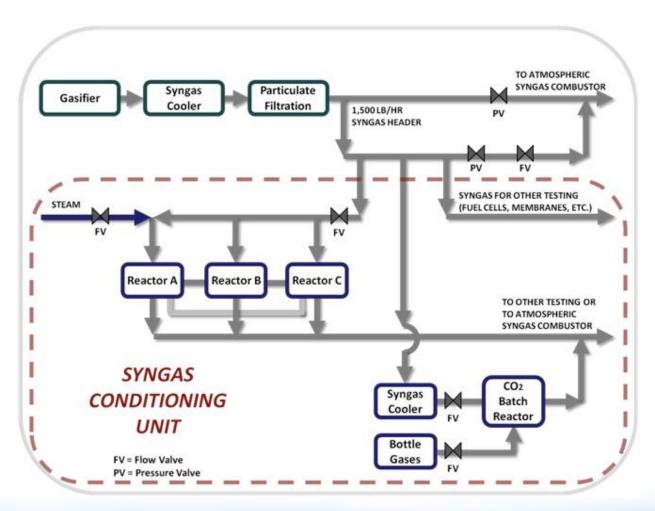


Managed by Southern Company Services, Inc.



### Goals of the NCCC

- Offer a unique <u>flexible testing facility</u> where <u>Technology Developers</u> can scaleup their processes in an industrial setting using coal derived syngas.
- Serve as a technology development facilitator by providing facilities for the <u>scale-up from bench-top to engineering-scale</u>
- Solicit and incorporate activities and projects from a wide variety of participants and partners. Find "Best-in-class" Technology.
- Deliver innovation through a cross-cutting, collaborative project portfolio that provides an <u>accelerated pathway to cost-effective CO<sub>2</sub> capture</u> technology for coal fueled power production










# SCU Layout



Designed to provide hot, dust-free syngas in support of testing and scale up of developer's technologies:

WGS catalysts

CO<sub>2</sub> membranes

H<sub>2</sub> membranes

CO<sub>2</sub> adsorbents

Chemical CO<sub>2</sub> solvents

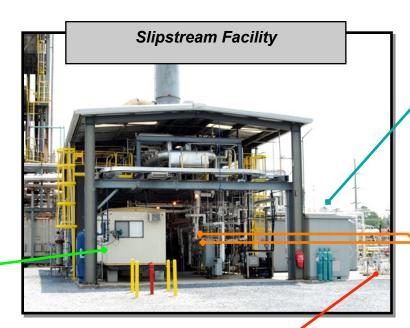
Physical CO<sub>2</sub> solvents

Mercury sorbents

Fuel cells

Advanced instruments

**Chemical looping** 




# **Pre-combustion Capture Projects**







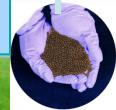






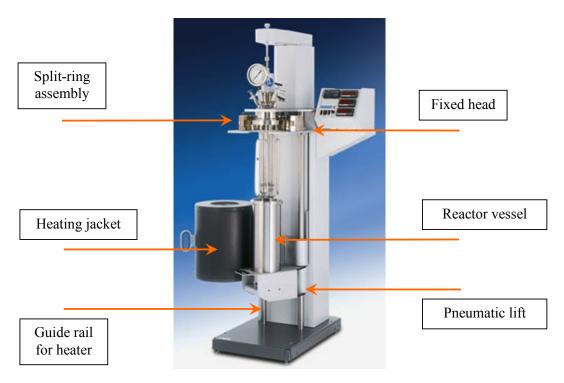










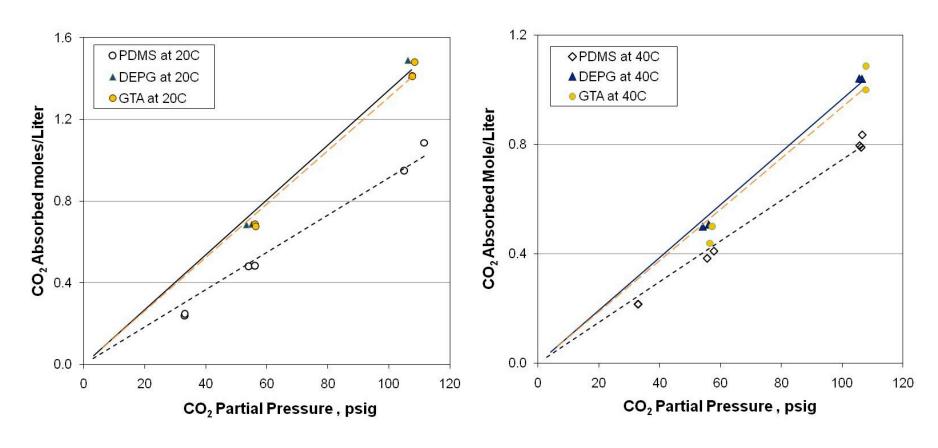


Membrane Gas Separation (100-400 °F)

Hg Capture Sorbent (500 °F)





#### Parr Stirred Batch Reactor

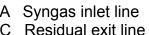



Reactor: 17 inches tall x 6 inches ID, volume of 0.28 ft<sup>3</sup> Maximum operating conditions 1215 psia and 660°F

- Chemical solvents tested are ammonia, potassium carbonate, and sodium prolinate (amino acid salt).
- Physical solvents tested are polydimethyl siloxane (PDMS), dimethyl ether of polyethylene glycol (DEPG) and glycerin triacetate (GTA).
- Physical solvents proposed by DOE based on tests at University of Pittsburgh.
- Preparing to test dimethyl carbonate

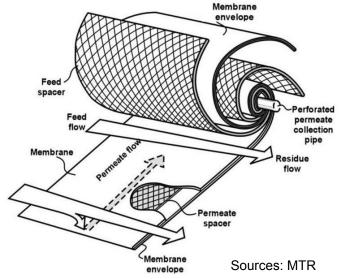


# Effect of CO2 Partial Pressure on Absorption Capacity

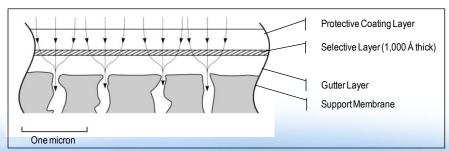



- At 20°C, DEPG and GTA have similar CO<sub>2</sub> capacity and 40% more than PDMS.
- At 40°C, similar trends but CO<sub>2</sub> capacities all lower.




# Membrane Technology & Research (MTR) CO2 Membrane






B Permeate exit line

- Over 1700 hours testing at 60 to100°F and 50 lb/hr syngas: sulfur tolerant.
- Preparing to support testing of 500 lb/ hr syngas CO<sub>2</sub> membrane.



Spiral-wound design using polymer materials





### Summary of Pre-Combustion Testing

- Supporting developers in making transition from laboratory to commercial testing environment.
- Collecting and validating test data in support of scaling up developer's technologies.
- Continuing to seek opportunities to support development of emerging technologies and upgrading SCU infrastructure accordingly.



### Frequently Asked Questions about Testing at the NCCC

- What does it cost to test at the NCCC?
  - Your people
  - Your solvent, plus disposal
  - Any major changes to the facility.
- What is the approval process?
  - Technology Collaboration Agreement
     Site access, IP provisions, division of responsibility
  - NETL approval of test plan



# **Questions?**

**Frank Morton 205–670-5874** 

fcmorton@southernco.com

http://www.nationalcarboncapturecenter.com/

